LOYOLA COLLEGE (AUTONOMOUS) CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

SIXTH SEMESTER - APRIL 2025

UST 6502 - OPERATIONS RESEARCH

Date: 26-04-2025	Dept. No.	Max. : 100 Marks
Time: 09:00 AM - 12:00 PM		

SECTION -A

Answer any FOUR of the following

4x10 = 40 Marks

- 1. Solve the following L.P.P. graphically:
 - Minimize $z = 400x_1 + 360x_2$ subject to the constraints:

 $5x_1+3x_2 \ge 45$, $x_1 \ge 8$, $x_2 \ge 10$

 $x_1 \ge 0$ and $x_2 \ge 0$.

- 2. Write the algorithm of Big M method to solve a linear programming problem.
- 3. Explain the dual simplex method for solving a linear programming problem.
- 4. Find the initial solution using (i) North-West corner rule and (ii) Vogel's approximation Method:

Warehouse	I	II	III	IV	Capacity
Factory					
A	42	48	38	37	160
В	40	49	52	51	150
С	39	38	40	43	190
Demand	80	90	110	160	

5. Four operators O₁, O₂, O₃ and O₄ are available to a manager who has to get four jobs J₁, J₂, J₃ and J₄ done by assigning one job to each operator. Given the times needed by different operators for different jobs in the table given below:

To From	J_1	J_2	J_3	J_4
O ₁	12	10	10	8
O_2	14	12	15	11
O ₃	6	10	16	4
O_4	8	10	9	7

How should the manager assign the jobs so that the total time needed for all jobs is minimum?

- 6. Write the steps involved in the construction of a network diagram.
- 7. The following are the details of estimated times of a certain project.

Activity	Immediate predecessors	Normal time (days)
A	ı	16
В	-	20
С	A	8
D	A	10
Е	B, C	6
F	D,E	12

Draw the network diagram and find the critical path and also the expected time of the project.

8. Explain the linear programming method for solving a game.

Answer any THREE of the following

9. Use simplex method to solve the following L.P.P.:

Maximize $z = 4x_1 + 10x_2$

Subject to the constraints:

$$2x_1+x_2 \le 50$$
; $2x_1+5x_2 \le 100$; $2x_1+3x_2 \le 90$; $x_1 \ge 0$ and $x_2 \ge 0$.

10. Write the dual of the following L.P.P. and solve:

 $Minimize z = 15x_1 + 10x_2$

Subject to the constraints:

$$3x_1 + 5x_2 \ge 5$$
 , $5x_1 + 2x_2 \ge 3$

$$x_1 \ge 0$$
 and $x_2 \ge 0$.

11. Find the optimum solution to the following transportation problem:

A company has three cement factories A, B, and C and four area distributors W,X,Y and Z. With identical costs of production at the three factories, the only variable cost involved is the transportation cost. The monthly production capacity (in tons) of the three factories, monthly demand of the four distributors, and the transportation cost per ton (in Rs.) from the different distribution centers, are given below:

Distributor	W	X	Y	Z	Supply
Factory					
A	20	25	50	10	45000
В	45	50	15	40	50000
С	22	10	45	35	55000
Demand	50000	40000	30000	30000	150000

12. The following optimistic (O), pessimistic (P) and most likely (M) time estimates(days) for each task have been given for a project:

	0 1	3		
Task	Predecessors	O	M	P
A	-	10	12	15
В	-	6	10	16
С	A,B	3	5	10
D	C	8	12	17
Е	C	4	7	12
F	C	3	4	6
G	D,E	5	8	13
Н	F,G	5	7	10

Construct the network diagram for this project and find the critical path. Also find the expected duration of the project.

13. Using dominance method solve the game with the following payoff matrix:

14. Solve the following problem graphically:

\$\$\$\$\$\$\$\$\$\$\$\$\$